Fresnel lens Gamma Ray Telescope

ACS

ACS

- * ACS Overview
- **♦** Requirements
- **♦** Assumptions
- **♦** Control Modes
- ◆ Disturbances/Sizing
- * Sensors and Actuators
- ◆ Future Technology
- ♦ Comments/Concerns

ACS Overview

◆ Purpose of Study

- Possible solution direction
- Provide insight into potential problem areas

◆ ACS technical challenges

- Translation requirements
 - High precision translation sensors must be developed (metrology)
 - Coupled position/attitude determination and control

* ACS requires inter-spacecraft control to meet challenges

- Pseudo-Rigid formation
 - Lining up the two spacecraft (assumed in this work)
- Formation pointing
 - High performance ACS system

ACS - Assumptions

 ◆ Metrology → relative position determination and control in place

•

Inertial pointing

Life/goal of system 3/5 years

Orbit:

Heliocentric, 1AU from sun, Drift orbit

Mass and Inertia

Detector: [7504.0 3742.0 4699.0] kg-m²;
 Lens: [2407.0 2407.0 1801.0] kg-m²

• Effective Area:

Detector: SA- 46.3 m²
 Lens: - 25 m²

ACS Driving Requirements & Assumptions

◆ Pointing Accuracy (3σ) 60.0 arcsec / 100.0 microarcsec*

♦ Attitude knowledge (30): 10.0 arcsec / 1.0 microarcsec*

♦ Position Control: 10 cm

♦ Position knowledge: 4.0 mm

♦ Attitude Slew Rates: 180 deg/week

^{*} Accuracies with respect to coupled line of sight problem

ACS Control Modes

- * Science Mode 3-axis stabilized, inertial pointing;
 - Use metrology and attitude sensor (detector s/c has fine metrology sensor)
 - Lens: Wheels to control attitude
 - Detector: Wheels and micro thrusters to control attitude/position
- ◆ Safehold Mode Sun Acquisition, array → sun pointing;
 - Use IRU, CSS and wheels to null attitude rates and point solar array normal to the sun
 - Find inertial attitude and relative positions with ST and metrology system
 - Use accelerometer and thrusters to null translation rates and unload wheel momentum
- Orbit/formation Maintenance Mode
 - Use gyro and metrology system sensor
 - Thrusters (micro and standard) provide both Delta V and attitude control actuation.
- Acquisition Mode
 - Use coarse ST to point both lens and detector crafts to target
 - Lens craft remains fixed (only rotates), move detector
 - Use coarse Metrology sensor/thrusters to guide detector into FOV of fine metrology sensor
 - Use fine Metrology sensor/micro thrusters to lock in line of sight position (pseudo-rigid structure).

ACS Disturbance Torques

- ◆ There are no significant gravity gradient or aero torques
- ♦ Solar Pressure disturbance torques are the only significant torques

Lens Craft

Solar Pressure Disturbance Torque = 2.78e-4 Nm

Detector Craft

Solar Pressure Disturbance Torque = 3.35e-6 Nm

Actuation Approach

· Lens Craft

- Use 4 Ithaco A -wheels as actuator for fine control and repointing, considering using an isolation package to reduce noise
- Use cold gas for momentum unloading (less than 5 Kg propellant)
- Use cold gas as back up to null tip off rate

· Detector Craft

- Use 4 Ithaco A-wheel to perform angular rotation, turn wheel off during science mode
- Use milli/micro thruster for fine control
- Use thruster to maneuver and unload momentum
- Use thruster as back up to null tip off rate

Position and Attitude Sensing and Control

♦ Needed:

- High precision metrology (position) system assumed
- High precision ACS

◆ Possible solution direction

- Tie Formation attitude to the stars
 - High Performance ST, High Performance Gyro

◆ Supplement

- Tie Formation attitude to the stars
 - Super Gyro: Gravity Pro B type of Gyro
 - Super Star Tracker
 - Radio Interferometry
- Formation → pseudo rigid structure (Metrology)
 - Relative position system
 - translation in the x-y focal plane CCD based micro star tracker
 - Laser/beacon
 - Gimbaled or oversized detector

Formation Attitude

- ◆ Fine Star Tracker, High Performance Gyro
 - Description
 - High Performance system (ST & IRU)
 - Advantages
 - Maturity: TRL 9
 - Disadvantages
 - Small FOV
 - Require a coarse star tracker

ACS Components (Lens)

Baseline Design	Cost is SWAG				Power	Power	Power
			Cost	Mass	Orbit Avg	Peak	5afehol:
Components	Model	Quantity	(\$K)	(Kg)	(W)	(W)	(W)
ACE	(Based on TRMM)	2		24	28	34	28
Coarse Sun Sensor	Adcole 11866	8		0.04	0	0	0
IRU	TARA II Two Axis Rate Gyro	3		5.7	20.7	22.5	20.7
Ball Aerospace Star Tracker	CT-633	2		5	30	30	0
Laser/Beacon System		2	TBD	TBD	TBD	TBD	TBD
Electronic Valve Drive (EVD)	(Based on MAP EVD)	1		10	13	17	0
Reaction Wheel	Ithaco A (USA)	4		2.55	33.6	80	33.6
		Total =		47.3	125.3	183.5	82.3

ACS Components (Detector)

Baseline Design	Cost is SWAG				Power	Power	Power
_			Cost	Mass	Orbit Avg	Peak	afeho
Components	Model	Quantity	(\$K)	(Kg)	(W)	(W)	(W)
ACE	(Based on TRMM)	2		24	28	34	28
Coarse Sun Sensor	Adcole 11866	8		0.04	0	0	0
IWU	LN-2005	2		1.5	24	30	24
Micro arcsec Star Tracker	TBD	2	TBD	TBD	TBD	TBD	0
Ball Aerospace Star Tracker	CT-633	2		5	20	20	0
Electronic Valve Drive (EVD)	(Based on Map EVD)	1		10	13	17	0
PPT	TBD	3		5	5	5	5
Reaction Wheel	Ithaco A (USA)	4		2.55	33.6	80	33.6
		Total =		48.1	123.6	186	90.6

ROM ACS Labor Cost

GNC / Systems	
Engine ering	
ACS Design &	
Analys is Labor	
ACS Hardware	
Labor	
ACE Hardware	
Labor	
Hybrid Dynamic	
Simulator (HDS)	
Integration and	
Testing	
GRAND TOTAL	\$

Note: Estimated cost derived from existing programs, such as MAP :complexity= 2 cost in \$K

ACS Requirements Imposed On Other Sub-Systems

◆ Lowest structural mode

→

Mechanical

• Effects on ACS Controller bandwidth

Communication

◆ Communication between spacecraft
 ◆ Position information (TBD)

Metrology

◆ Maximum cp-cg offset is 10% of height

Mechanical

Future Technology

◆Technology

- Metrology → Laser/beacon/detector
 - Detector (micro arc-second star tracker) resolution (x-y detector)
- Thermal control of sensor
- Vibration isolation of actuators
- Formation Flying and Acquisition Algorithms
- Multiple lens or detector formation

ACS Concerns and Comments

♦ Concerns

- Attitude and Position are coupled!!!!
- The feasibility of achieving micro arc second imaging when spacecraft is controlling only to arc minute accuracy
- Fine position control thrust firing effect effect on life and reliability of thrusters (start stop cycle)
- Contamination of thruster firing on detector wrt metrology sensor
- Formation safehold
- Fuel Slosh

♦ Comments

- Expandability/modularity of formation to accommodate addition s/c or perform other missions
- Lens spacecraft defines the desired position/attitude for the detector spacecraft?
- Consider putting the super star tracker (metrology) in a high precision gimbal system
- Redo disturbance analysis as s/c configurations change

Supplement

Pseudo-Formation Structure

◆ Laser/beacon type relative position sensor

- **Description**: control the motion of the detector such that the laser from the beacon hits the center of the detector
 - Coarse positioning: Lower grade oversized detector
 - Laser for the fine positioning
 - mounted on piezoelectric actuators
- Rigid (Tight): Precision track and control of position
- Flexible (Soft): control threshold
- Track the drift take it out in the post processing

♦ Laser/beacon type relative position sensor

- Advantages
 - Relative positions
 - Vehicle collision avoidance
 - Different levels of control
 - Can accommodate large formations
 - Individual vehicles have different wavelength/frequencies
- Disadvantages
 - (tight) → Control chatter in the thrusters will effect their efficiency and life
 - May need piezo-electric gimbaled actuator on fine positioning system
 - Maturity:
 - The detector (photons required for a given accuracy).
 - Need a star tracker type of detector

◆ Automated Formation Flying (AFF) system

- Advantages
 - Relative positions
 - Can accommodate large formations
- Disadvantages
 - Could easily be a mission in itself (but this may be a technology initiative)
 - Maintain that formation
 - Resolution issues
 - Cost
 - Difficult with large separation distances
 - Maturity: TRL 5??

◆ Super gyro: Gravity Pro B

- Description
 - Super Gyro and Commercial Star Tracker
 - Stripped down version of Gyro on the Gravity Pro B mission.
 - Utilizing computation schemes and longer observation times to obtain higher accuracies when looking at faint stars.
- Advantages
 - Can look any where in the sky
 - Stable over hrs to micro arcsec
- Disadvantages
 - Thermal control: Uses Low temperature Super conductors
 - Cost!!!!!!
 - longer observation
 - Maturity: TRL 2

◆ Super Star Tracker:

- Description: advanced detector requiring less photons
 - Potential sensors will be examined in the ISAL
 - Uses a commercial Gyro
- Advantages
 - Micro arc seconds accuracy
 - Reduce computational time for attitude determination
 - Stable
- Disadvantages
 - Needs coarse star tracker (FOV issues)
 - Thermal stability:
 - Calibration time
 - Cost, power
 - Maturity: TRL ??

Radio Interferometry

- Description
 - Two antenna on each vehicle to look at two stars to collect signals
 - One fast Computer to perform correlation of data to derived attitude

- Advantages
 - Maturity: has been done → ARISE
 - One space antenna and one earth
 - Claim that it can achieve 100 μ arc-second resolution
 - Different wavelength
 - Can be used RF antenna for coarse acquisition
- Disadvantages
 - Power needed
 - Size of radio antenna
 - Computation power needed
 - Data rates → bandwidth